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Abstract

Logical inferentialism claims that the meaning of the logical constants
should be given, not model-theoretically, but by the rules of inference
of a suitable calculus. It has been claimed that certain proof-theoretical
systems, most particularly, labelled deductive systems for modal logic,
are unsuitable, on the grounds that they are semantically polluted and
suffer from an untoward intrusion of semantics into syntax. The charge is
shown to be mistaken. It is argued on inferentialist grounds that labelled
deductive systems are as syntactically pure as any formal system in which
the rules define the meanings of the logical constants.
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1 Semantic Pollution

Poggiolesi and Restall (2012) discuss how to frame a proof theory for modal logic
which accords with Gentzen’s idea (1969) that the operational rules should be
separable (that is, each rule should mention only one connective, so that there
are separate rules for each logical constant), and should divide into those rules
which define the meaning of the connective by introducing a formula exhibiting
the connective as its main connective, and those which eliminate it. The stan-
dard rules, due to Curry (1950), Fitch (1952) and Prawitz (1965), do not do
this, for two reasons: first, they do not easily generalize (if at all) from rules for
the systems S4 and S5 to the full range of (even) normal modal logics; secondly,
although the rules have the form of introduction and elimination rules, and in-
deed normalize,1 it is clear that, e.g., the introduction-rule for ‘♦’ (possibility)
does not capture its full meaning in the way inferentialism expects:

α
♦α

♦I∗

This says that ♦α is true whenever α is true, which is indeed so. However,
♦α can also be true when α is false. Inferentialist considerations turning on
the idea that the introduction-rule(s) give the meaning of the connective in
question suggest that if ♦I∗ did indeed capture the (full) meaning of ‘♦’, the
elimination-rule which it justifies would read:

♦α

(α)
....
β

β
♦E∗

1See, e.g., Prawitz (1965, ch. VI).
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However, ♦I∗ and ♦E∗ suffice to show that α and ♦α are inter-derivable, so
that ‘♦’ collapses into a truth-operator. To prevent this, Curry et al. restrict
the elimination-rule by the form of the formulae which can replace ‘β’ and
which can be parametric assumptions in the minor premise. But nothing in
the I-rule justifies these restrictions, which are added ad hoc solely to prevent
the derivation of inferences which do not accord with the intended meaning. In
brief, ♦I∗ and ♦E∗ (so restricted) are not harmonious.2

Poggiolesi and Restall (2012) consider three ways of giving rules for the
modal connectives which accord better with their intended meaning. All three
are in fact presented in sequent calculus versions, with right-introduction rules
matching natural deduction I-rules and left-introduction rules matching the nat-
ural deduction E-rules. The first is a display calculus, which they dismiss as
unnecessarily complex. (Poggiolesi and Restall, 2012, p. 46) The second method
they canvass and reject is the use of a labelled deductive system of the sort pre-
sented in Read (2008), and originally put forward in Simpson (1994), Basin
et al. (1997) and Viganò (2000). Their particular target is the labelled sequent
calculus presented in Negri (2005). They marshal three objections against it,
the first of which is that it unacceptably exploits semantic notions in the proof
theory:

“The labelled method . . . is a semantic method [in that] it imports
in its language the whole structure of Kripke semantics in an explicit
and significant way.” (Poggiolesi and Restall, 2012, p.49)

Rather, they protest, a purely syntactic method should “not make any use of
semantic parameters beyond the language of formulas” (loc.cit.). Ironically, a
similar complaint of impurity was rebutted in Negri (2007, see esp. p. 109).3 A
similar complaint against labelled deductive systems was endorsed in an early
draft of (Humberstone, 2011, Remark 1.21.2) circulated online (though omit-
ted from the published version) and dubbed “semantic pollution”, an epithet
attributed there to Rajeev Goré in conversation.4 My aim is to contest this
misconstruction. The rules of the labelled calculus give a clear and transparent
account of the meaning of the modal connectives—their semantics. This is not
pollution, but is in fact purer syntactically than Poggiolesi and Restall’s third
and preferred calculus, that of tree-hypersequents.

2 A Labelled Deductive System for Modal Logic

We have seen that the Curry-Fitch-Prawitz (CFP) rule ♦I∗ does not capture
the full meaning of ‘♦’. ♦I∗ suggests that ♦α means that α is true, not just
possibly true. But, although the truth of α is sufficient for the truth of ♦α,
it is not necessary. If we take ♦I∗ as the only case suitable for introduction
(i.e., assertion) of ♦α, we cannot help but suggest, when the rule is taken as
meaning-conferring, that the truth of α is not only sufficient but necessary for
that of ♦α. We need to weaken ♦I∗ so that this suggestion, or implication, is
removed.

Leibniz’s seminal idea was that the meaning of ‘possibly α’ can be articu-
lated in terms of the idea of possible worlds. If we allow ourselves to speculate

2See Read (2008). Nonetheless, as discussed there, the Curry-Fitch-Prawitz rules between
them do capture the correct meaning of ‘♦’, as is shown by the semantics.

3Moreover, many of the desiderata on a suitable proof theory set out in Poggiolesi (2011,
§1.7) can already be found in Negri (2007, p. 108).

4See also Goré (1999, p. 359).
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that this world, though perhaps the “best of all possible worlds”,5 is only one
among many alternatives, we can capture the meaning of ‘♦α’ by the formula
‘α is true in some possible world’, either this world or one of its alternatives.
Kripke’s particular insight,6 some three hundred years later, was that the notion
of alternative in play here is relative: that one world is alternative relative to
another. The properties of this binary relation (sometimes called “accessibil-
ity”) determine what model structures are permissible and so, by restricting the
class of models, determine which consequences are valid and so which logic is
modelled.

Accordingly, ♦α is true at world(-index) w if α is true at some world(-index)
possible relative to w. That condition spells out the meaning of ‘♦’ in terms of
both necessary and sufficient conditions for the truth of ♦α relative to an index
w (written ♦αw):

αv w < v

♦αw
♦I

‘w < v’ reads: v is accessible from, that is, possible relative to, w.7 We refer
to wffs of the form ♦αw as “labelled formulae”, and wffs of the form w < v as
“relational formulae”.8 Leibniz relativized truth to worlds, or indexes, w, and
Kripke relativized possibility to those indexes truth at which determines modal
truth at other worlds. ♦I thus gives the necessary and sufficient conditions for
the assertion that ♦α is true at w, that is, it gives the meaning of ‘♦’ inferentially.
♦α means that α is (relatively) possible.

♦I does not specify the full inferential behaviour of ‘♦’, however. It tells
us under what conditions ♦α may be asserted, but it does not say what may
be inferred from an assertion of ♦α. As Gentzen (1969, p. 80) remarked, “the
introductions represent, as it were, the ‘definitions’ of the symbols concerned,
and the eliminations are no more, in the final analysis, than the consequences of
these definitions.” This alludes to the importance of proof-theoretical harmony
to an inferentialist account of meaning. The E-rules should permit no more and
no less than is justified by the meaning encapsulated in and conferred by the
I-rules. Let us consider the general case before returning to ♦I. Suppose some
connective ‘∗’ forming wffs ∗~α (the vector indicating that ‘∗’ may take multiple
arguments, ≥ 0) has m I-rules (as, e.g., ‘∨’ has 2) each with ni premises, πij
(0 ≤ j ≤ ni), ni ≥ 0. Each premise may be a single wff, or a derivation of a
wff from one or more assumptions that are discharged by the rule (think of the
former case as a derivation in which nothing is discharged):

πi1 . . . πini

∗~α ∗Ii

The collection {∗Ii : i ≤ m} specifies the meaning of ‘∗’, and the E-rules in
harmony with this collection should allow one to infer no more and no less than
is justified by that meaning. Gentzen’s insight was that such harmony would be
guaranteed (he didn’t have the term, which was introduced by Dummett (1973,
p. 396), but he had the concept) if each minor premise of each case of ∗E should
infer a common conclusion γ from the assumption, discharged by the rule, of
one of the grounds πij (a ≤ j ≤ ni, 1 ≤ i ≤ m) of each of the I-rules. For when

5See, e.g., Leibniz (1985, §168).
6Kripke (1963).
7This is an heuristic reading. With no constraints on ‘<’, it no more means ‘relatively pos-

sible’ than ‘♦’ means ‘possible’ in the weakest normal modal logic, K. The rules constraining
‘<’ given below affect the grounds on which ♦α may be asserted, and so affect the meaning
of ‘♦’.

8Note that the non-modal rules must now be rewritten to track the labels. See, e.g., Viganò
(2000, chs. 2, 4).
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∗~α (the major premise of the rule) was so inferred by ∗Ii and used in turn to
infer γ, the introduction of ∗~α would be redundant, and γ would be justified
not by assertion of ∗~α, but by the grounds for asserting ∗~α in the first place:9

....
πi1

. . .

....
πini

∗~α ∗Ii

[π1j1 ]
....
γ . . .

[πmjm ]
....
γ

γ ∗Ek

Provided the condition on ∗Ek is satified that, whichever E-rule is applied, at
least one premise of ∗Ii matches a minor premise in which it is discharged, the
detour via ∗~α may be avoided, and γ inferred directly from πij :

....
πiji....
γ

A straightforward calculation reveals that we need at most
∏m

i=1 ni E-rules to
meet this condition.

In fact, fewer than
∏m

i=1 ni E-rules will be generated if πij and πij′ are in
some way connected. For example, in the case of ♦I: there is one I-rule with
two premises, so we might expect there to be two E-rules. However, this would
be to ignore the fact that ‘v’ occurs in both premises, so that they are indeed
connected. Moreover, ‘v’ is in a certain sense arbitrary. To understand what is
happening, consider the rule ∃I of existential introduction:

α(t/x)

(∃x)α
∃I

where α(t/x) results from α by replacing all free occurrences of ‘x’ by ‘t’.10 ‘t’
is arbitrary in the sense that this rule is shorthand for the indefinite collection
of rules {∃It : t ∈ T}, where T is the set of terms in the language. The rule is
valid for any term t ∈ T . So instead of one E-rule with just one minor premise,
{∃It : t ∈ T} generates one E-rule with infinitely many minor premises, one for
each t ∈ T .11 However, that infinitary rule can be simplified to the familiar rule
∃E by recognising the arbitrariness of ‘t’ in ∃I, using a variable ‘u’ in place of
the various terms ‘t’:

(∃x)α

[α(u/x)]
....
γ

γ ∃E

where ‘u’ does not occur (free) in γ or in any parametric assumption, and
the assumption α(u/x) is discharged by the rule. Provided this restriction is
satisfied, the minor premise here can go proxy for any of the minor premises in
the infinitary rule. ‘u’ is arbitrary in the sense that the result of replacing ‘u’

9Note that the discharged assumptions πiji here are in general the assumptions of the
existence of derivations. They cannot be simplified to the assumption of only the conclusions of
those derivations (adding proofs of their discharged assumptions as further minor premises)—
called in Read (2014) the “flattening” of the E-rule—as shown there and in Schroeder-Heister
and Olkhovikov (2014).

10Provided ‘t’ is free for ‘x’ in α, that is, ‘x’ does not occur within the scope of a quantifier
over ‘t’; else we need to replace ‘x’ by ‘t’ in a suitable variant of α.

11Assuming T is infinite. See Read (2000, §2.6).
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throughout the subproof of the minor premise γ by any term ‘t’ is still a proof
of γ.

Suppose we now want to adapt ∃I so that it characterizes the existential
quantifier of free logic, in which the quantifier connotes existence, but not all
terms t ∈ T denote. We then need to restrict ‘t’ as it occurs in ∃I to denoting
terms:

α(t/x) E!t

(∃x)α
∃I∗

where ‘E!t’ states the non-emptiness of the term ‘t’.12 ‘E!t’ restricts the set of
terms on which it is legitimate to generalize. Once again, ‘t’ can be any term
whatever, so ∃I∗ is shorthand for infinitely many rules {∃I∗t : t ∈ T}. However,
in composing the E-rule, ∃E∗, we need to take the premises α(u/x) and E!u in
matching pairs so that, when we reformulate the E-rule in a finitary way, the
variable ‘u’ is uniformly restricted:

(∃x)α

[α(u/x),E!u]
....
γ

γ ∃E∗

As before, ‘u’ should not occur (free) in γ or in any parametric assumption on
which the minor premise depends, in order that it go proxy for the infinitely
many minor premises in the infinitary rule. ∃E∗ is in harmony with ∃I∗, so that
the scheme:

A
α(t/x)

B
E!t

(∃x)α

[α(u/x),E!u]

C
γ

γ
reduces to

A
α(t/x)

B
E!t︸ ︷︷ ︸

C(t/u)

γ

The restriction on ‘u’ ensures that the result of replacing ‘u’ by ‘t’ throughout
C is still a proof of γ.13

The premises in ♦I are similarly connected, so that w < v restricts the
generality of the premise αv in such a way that the premises must again be
taken in pairs in composing ♦E; and again the minor premise of ♦E will go
proxy for indefinitely many derivations of γu from the pairs αv and w < v:

♦αw

[αv, w < v]
....
γu

γu ♦E

where ‘v’ is not free in γ nor in any parametric assumptions. That ♦I and ♦E
are harmonious is shown by a suitable simplification (or local reduction):

A
αv′

B
w < v′

♦αw
♦I

[αv, w < v]
C
γu

γu ♦E
reduces to

A
αv′

B
w < v′︸ ︷︷ ︸

C(v′/v)

γu

where once again the restriction on ‘v’ ensures that C(v′/v) is still a proof.

12See, e.g., Nolt (2014, §2.2).
13See, e.g., Prawitz (1965, pp. 37-38).
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The corresponding harmonious rules for ‘�’ are:14

[w < v]
....
αv

�αw
�I and �αw w < v

αv
�E

where ‘v’ in �I does not occur free in any parametric assumptions.15 We can
now prove �(α→ β) ` ♦α→ ♦β, valid in K, without resort to principles (such
as �α→ α) valid only in stronger systems:16

♦αw
3

�(α→ β)w w < v
1

α→ βv
�E

αv

2

βv
→E

w < v
1

♦βw
♦I

♦βw
♦E(1, 2)

♦α→ ♦βw
→ I(3)

The logic K, however, is too weak properly to capture the notion of possi-
bility. The rules need strengthening at least to give the system T, if not S4 or
S5, for ‘♦’ to be interpretable as possibility. We do so by adding constraints on
the relational symbol ‘<’:17

[w < w]
....
αu
αu

T
w < v v < u

[w < u]
....
αt

αt
4

w < v

[v < w]
....
αu

αu
B

w < v w < u

[v < u]
....
αt

αt
5

Note that relational wffs such as w < v can only occur as assumptions, being
never the conclusion of a rule of inference. (To this extent, the local reductions
displayed above are misleading, in suggesting they might.) So too for wffs such
as E!u in free logic. As we will see, w < v has no meaning in itself, for there are
no grounds for its assertion.

3 Syntactic Purity

My aim is to show that the system of modal logic in §2 is syntactically pure,
that is, as syntactically pure as any other system of logic, and not polluted
by the (apparent) semantic allusions in contains. Before we proceed, however,
we need to clarify what exactly the charge of “semantic pollution” amounts
to, especially in an inferentialist setting. By ‘semantics’, Poggiolesi and Restall
mean “model-theoretic semantics” or “model theory”. Anyone who accepts the

14The simplified form of �E here results from the general-elimination rule in a similar
manner to the simplification of the GE-rule for ‘→’, as spelled out in Read (2014, §3).

15Thus ‘v’ in �I is arbitrary, the premise going proxy for the indefinite collection of specific
I-rules, one for each index ‘v’; and �E is an indefinite collection of rules, one for each ‘v’.

16For the difficulties in incorporating ‘♦’ in the CFP systems, see Read (2008, p. 296).
17See Simpson (1994, p. 73). Cf. Viganò (2000, p. 24).
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application of model theory to the expressions of a logical system has to con-
cede that model theory interprets and gives meaning to those expressions. An
exception might be an intuitionist such as Dummett or Brouwer, who rejects
such semantic methods as inherently realist and hence to be eschewed.18 Some
inferentialists, such as Brandom or Prawitz,19 may endorse this attitude. They
believe that model theory incorporates realist assumptions which should be re-
sisted. Viewed from this perspective, Kripke’s semantics for intuitionistic logic,
for example, may help a classical logician, with his Platonist commitment to
the assumptions of model theory, to gain some grasp of the constructivist point
of view. But from that constructivist viewpoint, it is a false model, arguably
(pace Brouwer20) validating the right logical principles, but giving them a de-
terminate and objectual foundation which belies the open-ended nature of the
operations which are represented.

From a less austere inferentialist perspective, however, model theory has a
role to play. For example, Poggiolesi (2011, p. 6) endorses a model-theoretic (aka
“semantic”) proof of cut-elimination, even if it is a less illuminating one than its
constructive demonstration. Accordingly, she rejects Arnon Avron’s demand for
such a strong syntactic purity that the calculus “should be independent of any
particular semantics,”21 since that would seem to entail that even the sequent
calculus for classical logic is semantically polluted. For, as Beth (1969, p. 18)
points out, classical sequent calculus is little more than a notational variant
of his semantic tableaux or Smullyan’s signed trees. Consider the following
demonstration of one of the De Morgan laws, by sequent calculus, compared
with those by semantic tableaux in the style of Beth and the corresponding
signed tree (aka analytic tableau) which Smullyan (1968, II §1) adapted from
Beth’s method:

α⇒ α,¬β
⇒ α,¬α,¬β

β ⇒ β,¬α
⇒ β,¬α,¬β

⇒ α ∧ β,¬α,¬β
⇒ α ∧ β,¬α ∨ ¬β
¬(α ∧ β)⇒ ¬α ∨ ¬β

Valid Invalid

(1) ¬(α ∧ β)
(i) (ii)

(8) α (6) α

(2) ¬α ∨ ¬β
(3) α ∧ β
(4) ¬α
(5) ¬β

(i) (ii)
(9) β (7) β

(1) T¬(α ∧ β)
(2) F¬α ∨ ¬β

(3) Fα ∧ β
(4) F¬α
(5) F¬β

(6) Fα (7) Fβ
(8) Tα (9) Tβ
× ×

As Beth (1969, p. 21) remarks, the rules for the tableaux have a semantic basis:

“The sentence: ‘X and Y ’ is true (and the formula: ‘X&Y ’ is valid),
if and only if both X and Y are true (or valid). However, the rules
assume a completely formal character, if instead of speaking about
an individual p we speak about a symbol ‘p’.”

One can read the semantics directly off the proof theory, contrary to Avron’s
proposal for syntactic purity.

18See, e.g., Dummett (1991, pp. 239 ff.).
19See, e.g., Brandom (2000, ch. 1), Prawitz (1979).
20See, e.g., Fraenkel et al. (1973, pp. 239-40).
21Avron (1996, p. 2). He continues: “One should not be able to guess, just from the form

of the [syntactic] structures which are used, the intended semantics [i.e., models] of a given
proof system.”
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Beth’s talk of the rules’ having “a completely formal character” is an ex-
ample of what Dutilh Novaes (2011, §2.2.3) (cf. 2012, §1.1) calls the “formal
as desemantification”: treating symbols as having no meaning at all, in other
words, ironically, as non-symbolic. She draws an example (and the term ‘de-
semantification’) from Krämer (2003): the introduction of the symbol ‘0’ as a
(formal) aid to computation before it was thought of as referring to a number,
zero.22 But if inferentialism is right, this is a mistake: meaning (semantics)
does not consist solely or properly in a reference to a realm of objects, a model
theory, but meaning is already given by the rules for the use of the expres-
sion. Dutilh Novaes (2012, p. 57) suggests that only a “very broad conception
of semantics” would admit non-representational semantic import to count as
meaningful, but in fact, it is the very use of expressions that makes them so.
Whether they serve to denote something is a separate matter, arguably appli-
cable only to a subset of expressions and itself a matter of metaphysics, not of
semantics—the can of worms that follows from the “reification of entities we
may not be prepared to reify” (Dutilh Novaes, 2012, p. 92). She quotes Leibniz
with approval (2012, p. 200): “There is no need to let mathematical analysis de-
pend on metaphysical controversies.”23 But the infinitesimal calculus (to which
Leibniz was referring) is still meaningful whether or not infinitesimal quantities
exist. Semantics should not be identified with model theory.

Poggiolesi is rightly opposed to charging classical sequent calculus with se-
mantic pollution. Instead, she argues (2011, p. 29) for a weaker purity claim,
that “a sequent calculus should not make any use of explicit semantic elements.”
She sees this requirement as a descendant of Aristotle’s demand for “purity of
method” (2011, p. 13), whereby “the theory of any one science [cannot] be
demonstrated by means of another science” (An. Post. I 7, 75b14-15). Again,
the general thesis is too strong, as was recognised both by Aristotle himself (An.
Post. I 9 and 13: e.g., the use of arithmetic in music, or of geometry in medicine)
and by Bolzano (e.g., that the real basis of the intermediate value theorem in
geometry lies in analysis).24 Poggiolesi offers two arguments for her particular
claim: first, she appeals (2011, p. 31) to Ockham’s razor: why complicate things
for no good reason? But as we saw in §2, there is good reason, for the use of
labels in the deductive system can achieve more than did the CFP systems, and
more clearly, permitting harmony between the I- and E-rules and so making
the meaning conferred by the I-rule transparent. Secondly, Poggiolesi (2011, p.
19) appeals to two conditions on a good calculus, one being that the rules be
formal, the other an expression of inferentialism:

(III) The left and the right introduction rules of the sequent calculus
together can be considered as a definition of the symbol they introduce
since they both give the grounds for asserting a sentence containing
the connective they define.

(As we have seen, this is not a good way to express inferentialism: the CFP rules
♦I* and ♦E* together characterise ‘♦’ correctly, but neither gives the meaning
of ‘♦’. It is the I-rules that define the meaning by specifying the grounds for
assertion, as Gentzen observed, and the E-rules should be justified by them.)
Poggiolesi claims that her conditions (II) and (III) contain the tacit assumption
that the rules of a good calculus operate on wffs, not on semantic elements.
But this is circular. It assumes that the harmonious rules mentioned in her

22See Dutilh Novaes (2012, p. 200).
23Gerhardt (1859, IV, p. 91): letter from Leibniz to Varignon (2 February 1701): “On n’a

point besoin de faire dependre l’analyse Mathematique des controverses metaphysiques.”
24For a discussion of Bolzano’s observations, see Paoli (1991).
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conditions exclude labelled and relational formulas. We have seen, however,
that the labelled modal rules in §2 are harmonious.

A further consideration to which Poggiolesi and Restall (2012, p. 49) ap-
peal is that the admission of labels into formulae permits the construction of
expressions which have no use in proof, and introduces pairs of expressions dif-
ferent in form but identical in meaning. This leads to an increase in expressive
power (2012, p. 48), e.g., the introduction of expressions valid only on irreflexive
frames—there famously being no pure formula (or even set of formulas) which
does this. This is true; but it is a familiar situation, and it is unclear why such
an increase in expressive power should in itself be seen as a drawback. A similar
objection was made by, e.g., Rumfitt (2008, §7) and Tennant (1997, p. 320) to
the multiple conclusions of classical sequent calculus and natural deduction sys-
tems on the ground that they create expressions which do not naturally occur.
Even if this is true, however, they facilitate a clear and effective proof system
for classical logic and other systems, e.g., linear logic.25

Poggiolesi (2011, p. 15) also claims that eschewing labels provides a criterion
of logicality of an expression, namely, that “it can be analysed in purely struc-
tural terms”. But consider Poggiolesi and Restall’s preferred calculus for modal
logic, employing so-called tree-hypersequents. The language permits the con-
struction of hypersequents, that is, multisets of sequents. Tree-hypersequents
add a further complexity:

• if Γ is a sequent M ⇒ N , then Γ is a tree-hypersequent

• if Γ is a sequent and G1, . . . , Gn are tree-hypersequents,
then Γ/G1; . . . ;Gn is a tree-hypersequent.

The idea, as Poggiolesi (2011, p. 119) puts it, is to reflect “at the proof-
theoretical level, the structure of the tree-frames of Kripke semantics . . . without
the support of explicit semantic parameters” as employed in labelled deductive
systems. For example, the proof of the K-valid sequent �(α → β) ` ♦α → ♦β
in our labelled system in §2 takes the following tree-hypersequent form:

α⇒ α β ⇒ β

α→ β, α⇒ β
→L

�(α→ β)⇒ /α⇒ β
�L

�(α→ β)⇒ ♦β/α⇒ ♦R

�(α→ β),♦α⇒ ♦β
♦L

�(α→ β)⇒ ♦α→ ♦β
→R

This might appear purer syntactically than the labelled proof. It certainly
accords with the letter of Poggiolesi’s condition that there be no explicit semantic
elements. But as the structural similarity of the proof to that in §2 reveals, the
semantic content is still there, indicated by the apparatus of ‘/’ (and of ‘;’ in
more complex proofs). On the one hand, Poggiolesi and Restall (2012, pp.
52, 59) write: “the sequents are purely logical . . . the tree-hypersequent proof
theory gives us a framework in which the logical behaviour of these operators
can be exposed and precisely treated;” and Poggiolesi (2011, p. 187) claims, “the
sequent calculus has all the advantages of [the labelled] calculus . . . moreover, it
is syntactic [sic] pure.” On the other hand, Poggiolesi (2011, p. 120) admits, “we
can intuitively interpret the object Γ1/Γ2; Γ3; Γ4 as the world-sequent Γ1 being
linked to three other world-sequents.” First, we look at “a classical sequent as

25Moreover, Negri (2005, §5) shows that the presence of labels allows a contraction-free,
cut-free and harmonious calculus for provability logic.
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a world of a Kripke tree-frame” (Poggiolesi and Restall, 2012, p. 49): that was
what connected sequent calculus with Beth tableaux above. Then “the dash [i.e.,
slash] will represent the accessibility relation in a tree-frame” (loc.cit.), and the
semi-colon will represent accessibility to a multiplicity of world-sequents. The
meaning of ‘♦’ is given by the ♦R-rule, corresponding to the natural deduction
rule ♦I:

G[M ⇒ N/S ⇒ T, α]

G[M ⇒ N,♦α/S ⇒ T ]
♦R

that is (thinking of tableaux), if ♦α is false (in a world-sequent) then α is false
at any accessible world-sequent. The notation is less explicit and more opaque
than it is in the rule ♦I given in §2, but the content is the same. The rule ♦L,
corresponding to ♦E, then allows us to make inferences from statements of the
form ♦α in accordance with that meaning:

G[M ⇒ N/α⇒;X]

G[♦α,M ⇒ N/X]
♦L

that is, if ♦α is true (here), then α is true at some accessible world-sequent.
Harmony follows from the proof of Cut, the base case of which is shown by the
fact that:

M ⇒ N/S ⇒ T, α

M ⇒ N,♦α/S ⇒ T
♦R

M ′ ⇒ N ′/α⇒;X

♦α,M ′ ⇒ N ′/X
♦L

M,M ′ ⇒ N,N ′/S ⇒ T ;X
Cut(♦α)

reduces to
M ⇒ N/S ⇒ T, α M ′ ⇒ N ′/α⇒;X

M,M ′ ⇒ N,N ′/S ⇒ T ;X
Cut(α)

Thus the notation of tree-hypersequents disguises what the notation of labelled
sequents makes clear and explicit, namely, the semantic analysis of modal for-
mulae in terms of Kripke semantics.

Poggiolesi’s final argument turns on the claim that the calculus of labelled
sequents does not satisfy the spirit of the Subformula Property, even if it sticks
to the letter. A calculus satisfies the Subformula Property if whenever there is
a proof of M ⇒ N (or natural deduction derivation of N from M), there is a
proof in which only subformulae of M and N occur. This is true of the labelled
formulae of the labelled calculus, but it is not true in general, that is, when the
relational wffs are taken into account. For example, consider the derivation in
§2 of ♦α → ♦β from �(α → β). The labelled wffs α, β, α → β,♦α,♦β are all
subformulae of the premises and the conclusion; but the relational wffs w < v
are not.

Why is the Subformula Property considered so important? One reason is
its technical utility in establishing results such as consistency, and in proof
search algorithms. But there are other ways of estblishing consistency, and
other ways of speeding up proof search. Poggiolesi also links it to Aristotle’s
“purity of method”: possession of the subformula property means that proofs
use no concepts other than those employed in what they prove. We have already
seen that such modularity is probably an illusion in most sciences, including
logic. But we may also question whether this is really true of the presence of
relational wffs in proofs of purely modal formulae. Consider the use of ‘w < v’
in the labelled proof of �(α → β) ` ♦α → ♦β. The concept of possibility that
Leibniz identified and arguably replaced the idea that “no genuine possibility
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can remain forever unrealized”26 at the start of the fourteenth century has at
its heart the idea of alternative states of affairs, so the alternativeness relation
‘<’ and the alternative possible world v are implicitly, or analytically, contained
in the meaning of ‘♦’. That is why ♦I gives the meaning of ‘♦’ according to
logical inferentialism. Thus the lack of the subformula property does not here
betoken a failure of purity of method.27

It is important to realise, however, that while the appeal to expressions of
the form w < v in the modal rules characterises the meaning of the wffs �α and
♦α, these expressions need not be thought of as having any meaning themselves.
They are an auxiliary apparatus, heuristically motivated by Leibniz’s metaphor
of possible worlds (and Kripke’s idea of relative possibility). For relational wffs
w < v are never asserted, but serve only to restrict the range of the labels, them-
selves a purely syntactic device, which are deployed in a proof. The semantics
lies in the shape of the rules, not in any entities we may mistakenly reify when
beguiled by Leibniz’s metaphor.

4 Conclusion

In Read (2008) I rejected the model-theoretic account of modality on grounds
of circularity, and defended the inferentialist, or proof-theoretic, account on
the grounds that the non-actual possible worlds apparently referred to in the
labelled deductive system I advocated do not really exist (cf. Read, 2005). Pog-
giolesi and Restall (2012, p. 55) also reject model-theoretic semantics for modal
concepts, in their case on the grounds that it fails to pin down the notion of
relative possibility categorically, whereas the proof theory does not suffer the
same drawback. We share the belief, in fact, that the meaning of the logical
constants, including ‘♦’ and ‘�’, should be given inferentially by the rules of
a suitable proof theory. They argue, however, that importing the concepts of
Kripke semantics into proofs, as the labelled deductive systems do, robs these
proofs of a desirable syntactic purity. Indeed, Poggiolesi (2011, p. 31) claims
that the impurity that results is incompatible with the core aim of inferential-
ism embodied in her conditions on a good calculus, in brief, that the formal
rules of a sequent calculus satisfying the subformula property define the logical
constants. In place of such labelled systems, they advocate a calculus of tree-
hypersequents, and claim (Poggiolesi and Restall, 2012, p. 49) that a calculus
of tree-hypersequents “is . . . a syntactic method [that] does not make any use
of semantic parameters beyond the language of formulas”, and consequently is
“purely logical” (p. 53).

I have challenged that claim: the Kripke semantics is not merely implicit in
the very notation of tree-hypersequents, rather, it is explicit but opaquely dis-
guised in the notation of ‘/’ and ‘;’. But, opaqueness aside, this is as it should
be. The challenge of modal logic to inferentialism is to spell out the grounds
for assertion of �α and ♦α in terms of conditions on α alone. That cannot be
done without invoking some further apparatus. Leibniz’s insight, extended by
Kripke, was to analyse modality in terms of relative possibility: whether or not
worlds other than this one really exist, we can understand the truth of ♦α at one
“world” as consisting in the truth of α at some “world” possible relative to the
first. The tree-hypersequent introduction rule, ♦R, encodes that opaquely; the
labelled deduction rule, ♦I, spells it out transparently and explicitly. Moreover,

26See, e.g., Knuuttila (1982).
27Negri (2005, §6) accordingly extends the notion of subformula for modal wffs to include

relational wffs and wffs with other labels.
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in contrast to the traditional CFP rule, ♦I∗, ♦I captures the whole meaning of
‘♦’, lying in harmony with ♦E, not obscurely spreading that meaning between
the grounds for assertion and the consequences of that assertion, as do ♦I∗ and
♦E∗. Thus the rules of the labelled system for modal logic, far from being
semantically polluted, wear their meaning on their sleeves. Proof-theoretic se-
mantics is the claim that meaning is given by, or encapsulated in, the rules of
inference and the proofs that they permit. The labelled deduction rules do just
that: they spell out in proof-theoretic terms the grounds for assertion of modal
formulae and the harmoniously justified consequences of those assertions.

Stephen Read
University of St Andrews
Arché Research Centre
17-19 College St.
St Andrews KY16 9AA
Scotland, U.K.
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